
7/25/2018 | 1

Why you should care about
Technical Debt

Prof. dr.ir. Paris Avgeriou - paris@cs.rug.nl

Software Engineering and Architecture Group

http://www.cs.rug.nl/~paris/

mailto:paris@cs.rug.nl

The Known Universe

7/25/2018 | 3

Rankings - Top 100 university

Founded in 1614

#83 Times Higher Education
Worldwide

#59 Academic Ranking
of World Universities

#86 U.S. News ‘Best Global
Universities Ranking’

 | 4

Research Philosophy

› Core business: Software Architecture

› With Dutch & European industry (real problems)

• Embedded Systems & Enterprise Applications

› Automated Software Engineering

› Evidence-based Software Engineering

• Evidence matters - empirical research methods

7/25/2018 | 5

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

“Shipping first time code is like going into debt. A
little debt speeds development so long as it is paid
back promptly with a rewrite … ”

“The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts
as interest on that debt. Entire engineering
organizations can be brought to a stand-still under
the debt load of an unconsolidated implementation,
object-oriented or otherwise. ”

Ward Cunningham, The WyCash portfolio management system, OOPSLA ‘92

Technical Debt is a collection of design or
implementation constructs

that are expedient in the short term,

but set up a technical context that

can make future changes more costly or impossible

Dagstuhl April 2016

7/25/2018 | 8

Technical Debt illustrated

7/25/2018 | 10

Images from https://refactoring.guru/smells

Technical Debt metaphor

› Debt is a necessary tradeoff

• Loan for investment

• Quality-- for business value++

› Pay back principal (fix TD) + interest (maintain SW)

› Debt should be monitored and managed

• Risk – accumulation may spiral out of control

7/25/2018 | 11

Typical symptoms

› Taking more time to build a feature or fix defects

› Changes ripple through the system

› Rework is often and unexpected

› Deadlines/milestones continuously slipping

› Velocity drops

› Testing becomes very expensive

7/25/2018 | 12

7/25/2018 | 13

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

For every 100 KLOC an average
software application had approx.

US$361,000 of technical debt*

*B. Curtis et al. “Estimating the Principal of an Application’s TD,” IEEE Software ‘12

Is this really new?

Communities

› Maintenance & evolution

› Reengineering / refactoring

Terms

› Aging

› Decay

› Sustainability

› Little progress

› “Dull” topic

7/25/2018 | 17

Convergence of SE disciplines

› Program analysis/comprehension

› SW Quality measurement

› Qualitative research methods

› SW risk management

Managing TD>sum of parts!

7/25/2018 | 18

P. Avgeriou et al. Reducing Friction in Software Development, IEEE SW ‘16

7/25/2018 | 20

Z. Li et al., A systematic mapping study on technical debt and its management,
JSS 2015

Technical Debt

7/25/2018 | 22

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

Vicious circle of technical debt

7/25/2018 | 23

Incur TD
Lower

Dev
Velocity

Business
Pressure

Debt=Principal+Interest

7/25/2018 | 25

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD ‘15

Breaking point: principal vs. interest

7/25/2018 | 26

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD ‘15

Just the code?

Not quite right

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning
 …

7/25/2018 | 32

Technical debt is pervasive

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

7/25/2018 | 33

Complex dependencies
Architecture smells
Architecture drift

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

7/25/2018 | 35

Low code coverage
Lack of test automation

Residual defects not found

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

7/25/2018 | 36

Insufficient/incomplete/out of date
Lack of code comments

Architecture TD is dominant

7/25/2018 | 37

https://insights.sei.cmu.edu/sei_blog/2015/07/a-field-study-of-technical-debt.html

Although the architectural complex

problems only account for 8% of the

defects, they absorb 52% of the effort

spent in repairing defects

Bill Curtis, CISQ

7/25/2018 | 39

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

7/25/2018 | 40

Li et al., Architectural Debt Management in Value-oriented Architecting, Elsevier ‘14

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

7/25/2018 | 41

Code analysis
Dependency analysis
Solution comparison
Reverse engineering

TD Identification

7/25/2018 | 42

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

7/25/2018 | 43

Mathematical models
Code metrics

Human estimation

SonarQube

7/25/2018 | 44

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

7/25/2018 | 47

Refactoring
Automating manual tasks

Refactoring

7/25/2018 | 48

Repaying TD

7/25/2018 | 49

Digkas et al., The Evolution of TD in the Apache Ecosystem, ECSA ‘17

Repaying TD

› Large variation in survivability of issues

• 10% fixed within the first month

• 50% in the first year

• Some take up to ten years

› Very few issues types with fixing rate >50%

› Duplication and exception handling

• Frequently encountered

• Rarely fixed

7/25/2018 | 50

Digkas et al., How Do Developers Fix Issues and Pay Back TD in the Apache
Ecosystem, SANER ‘18

7/25/2018 | 53

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

SW Engineers
don’t like TD

Managers don’t
mind TD

Short deadline
vs.

Long-term sustainability

Communication bridge
Investment opportunity

State of the art

› Whole lifecycle but mostly code and design

› Basic concepts are mature

› Tooling (industrial & prototypes)

› Economic theories

7/25/2018 | 56

State of practice

SW engineers

› Understand the concept and challenges

› Deal with it during maintenance

› TD management in place but with constraints

• Resource-intensive

• Realistically only a portion managed

7/25/2018 | 57

Interplay between qualities

› Theory: Qualities studied as islands

› Practice: Qualities interplay

• Run-time vs. design time

› Communities needs to interact

› Interoperability

• Methods and tools

7/25/2018 | 58

https://sdk4ed.eu/

7/25/2018 | 59

7/25/2018 | 61

Join the community

› Bridging the gap between research and practice

› Join efforts

7/25/2018 | 62

Tech Debt conf @

Thank you

Credits:

Philippe Kruchten

Robert Nord

Ipek Ozkaya

Carolyn Seaman

Zengyang Li

Peng Liang

Areti Ampatzoglou

Apostolos Ampatzoglou

Alexander Chatzigeorgiou

